Thomson Problem

The Nobel Laureate physicist J. J. Thomson posed a problem in 1904 of determining the minimum electrostatic energy (and configuration) of \(N_{e}\) electrons constrained on the surface of a unit sphere, each electron repelling another from Coulomb's law. In reality, Thomson's model of the atom became outdated and Earnshaw's theorem suggests that no system of discrete electric charges can be held in stable equilibrium under the influence of their electrical interaction alone (Aspden 1987). Regardless, the Thomson problem is still related to spherical codes, sphere packing, computational geometry (for spheres of higher dimensions), and especially to #7 of Smale's list of unsolved problems in mathematics, and more. The Thomson problem presents itself as a non-convex optimization problem, and remains to be generally unsolved for all values of \(N_{e}>1\).

To frame the optimization problem, we will arrive at the objective function as a function of \(N_{e}\). Arriving at Coulomb's law, using Gauss's law of Maxwell's equations, in SI-units, the net outflow of the electric field \(\vec{E}\) through a closed surface (sphere), \(S\), with volume \(V\), around a charge \(q\), where the field travels towards negative charges (and radially outward for a positive charge), is proportional to the enclosed charge, consisting of a charge density across the enclosed volume, \(\rho\left( \vec{r} \right)\). Using permittivity of free space (\(\epsilon_{0}\)) as the coefficient of proportion,

\[ \begin{align} \vec{\nabla}_{r}\cdot\vec{E}\left(\vec{r}\right) = \frac{\rho\left(\vec{r}\right)}{\epsilon_{0}} \Rightarrow \iiint_{V} \left(\vec{\nabla}_{r}\cdot\vec{E}\left(\vec{r}'\right)\right) d^{3} \vec{r}’ = \frac{1}{\epsilon_{0}}\iiint_{V} \rho\left(\vec{r}'\right) d^{3} \vec{r}'\ = \frac{q}{\epsilon_{0}}.\label{eq:1} \end{align} \]

Using the divergence (or Gauss/Green-Ostrogradski) theorem, for a general field \(\vec{F}\),

\[ \begin{align} \iiint_{V} \left( \vec{\nabla} \cdot \vec{F}\right) dV = {\large\bigcirc}\kern-1.55em\iint_{S} \left(\vec{F}\cdot \hat{n}\right)dS.\label{eq:2} \end{align} \]

From eqs. \(\eqref{eq:1}\) and \(\eqref{eq:2}\), using spherical symmetry, and \(\vec{E}\) having a radial component pointing away from \(q\),

\[ \begin{align} {\large\bigcirc}\kern-1.55em\iint_{S} \left(\vec{E}\left(\vec{r}'\right)\cdot \hat{r}'\right) d^{2} \vec{r}’ = \frac{q}{\epsilon_{0}} \Rightarrow 4\pi r^{2} \vec{E}\left(\vec{r}\right) \cdot \hat{r}= \frac{q}{\epsilon_{0}} \Rightarrow \vec{E}\left(\vec{r}\right) = \frac{1}{4\pi\epsilon_{0}}\frac{q}{r^{2}} \hat{r} = k\frac{q}{r^{2}}\hat{r}\label{eq:3} \end{align} \]

where \(k = \frac{1}{4\pi\epsilon_{0}}\). The electrostatic potential energy \(U\left(\vec{r}\right)\) of two-point charge system \(\left(q, q'\right)\) is the work required to assemble the system of these two charges by bringing them close together, usually considered to be an infinite distance away (without undergoing any acceleration),

\[ \begin{align} U\left(\vec{r}\right) = \lim_{a\to\infty} \left(-\int_{a}^{r}\vec{F}\left(\vec{r}'\right)\cdot d\vec{r}'\right) = \lim_{a\to\infty} \left(-\int_{a}^{r}q'\vec{E}\left(\vec{r}'\right)\cdot d\vec{r}'\right) .\label{eq:4} \end{align} \]

From \(\eqref{eq:3}\) and \(\eqref{eq:4}\),

\[ \begin{align} U\left(\vec{r}\right) = \lim_{a\to\infty} \left(k \frac{qq’}{r’} \right)_{a}^{r} = k\frac{qq’}{r}. \label{eq:5} \end{align} \]

Likewise, the change in electrostatic potential energy of a system of \(N_{e}\) point charges is the work required to assemble the system of charges by bringing them close together from an infinite distance away, without undergoing acceleration. For a particle pair \(i\), \(j\), \(U_{ij} = k\frac{q_{i}q_{j}}{r_{ij}}\) where \(r_{ij} = \| \vec{r}_{i} - \vec{r}_{j} \|_{2}\). Without loss of generality, we shall ignore the magnitude of \(k\) and \(q_{i}\) \(\forall i\) \(\in\) \(\left(1,..,N_{e}\right)\), and arrive at the total electrostatic potential energy, \(\widetilde{U}\left(N_{e},\vec{r}_{1},…,\vec{r}_{N_{e}}\right)\), for the system of \(N_{e}\) point charges for a numerical minimization framework:

\[ \begin{align} \widetilde{U}\left(N_{e},\vec{r}_{1},…,\vec{r}_{N_{e}}\right) = \displaystyle\sum_{i<j<N_{e}} \frac{1}{r_{ij}}, i \in \left(1,..,j\right),j \in \left(1,..,N_{e}\right).\label{eq:6} \end{align} \]

Thus, from \(\eqref{eq:6}\) the objective function for the Thomson problem is:

\[ \begin{equation} \begin{aligned} & \underset{\vec{r}_{1}, …, \vec{r}_{N_{e}}}{\text{minimize}} & & \widetilde{U}\left(N_{e},\vec{r}_{1},…,\vec{r}_{N_{e}}\right) \\ & \text{subject to} & & \| \vec{r}_{i} \|_{2} = 1, \forall i \in \left(1,…,N_{e}\right). \end{aligned} \end{equation} \]

Minimizing the electrostatic energy across \(N_{e}\) electrons constrained on a sphere, presents a non-convex optimization problem where the number of local minima appears to grow exponentially with \(N_{e}\) (Laszlo, 2022). Here, I use a stochastic pattern search global optimizer (SP-GOPT Solver) for finding solutions for varying \(N_{e}\). I benchmark my results with those published already, and I attempt to pioneer for minimizing \(\widetilde{U}\left(N_{e},\vec{r}_{1},…,\vec{r}_{N_{e}}\right)\) for larger values of \(N_{e}\) than what I can publicly find (with the help of distributed optimization using MPI).

Numerical solutions (global minima) and configurations, of smallest electrostatic energies \(N_{e}>1\)

For \(N_{e} \le 100\), SP-GOPT is used to calculate \(\widetilde{U}_{\text{min}}\left(N_{e}\right)\), called \(\widetilde{U}_{\text{min}}^{\text{SP-GOPT}}\left(N_{e}\right)\), and is compared against already-published results, \(\widetilde{U}_{\text{min}}^{\text{benchmark}}\left(N_{e}\right)\), for benchmarking purposes. For the optimization routine, the initial evaluation is such that \(\left( \vec{r}_{1},…,\vec{r}_{N_{e}}\right)\) are on a single point, and a re-start (for premature terminations) uses the previous start output as the new initial set of \(\left( \vec{r}_{1},…,\vec{r}_{N_{e}}\right)\). The optimal coordinates, denoted as \(\left( \vec{r}_{1}^{*},…,\vec{r}_{N_{e}}^{*}\right)\), are subject to being rotated about a unit sphere. The results in green are smaller than published results.

\(N_e\) \(\widetilde{U}_{\text{min}}^{\text{benchmark}}\left(N_{e}\right)\) Benchmark
Source
\(\widetilde{U}_{\text{min}}^{\text{SP-GOPT}}\left(N_{e}\right)\) \(\vec{r}_{1}^{*},…,\vec{r}_{N_{e}}^{*}\) # of iterations # of re-
starts
# of CPU
threads
2 0.500000000 Laszlo, Wikipedia, 2022 0.5000000000 .txt, .fig, .png 961 1 1
3 1.732050808 Laszlo, Wikipedia, 2022 1.7320508076 .txt, .fig, .png 947 1 1
4 3.674234614 Laszlo, Wikipedia, 2022 3.6742346142 .txt, .fig, .png 998 1 1
5 6.474691495 Laszlo, Wikipedia, 2022 6.4746914947 .txt, .fig, .png 1640 1 1
6 9.985281374 Laszlo, Wikipedia, 2022 9.9852813742 .txt, .fig, .png 2243 1 1
7 14.452977414 Laszlo, Wikipedia, 2022 14.4529774142 .txt, .fig, .png 69843 1 1
8 19.675287861 Laszlo, Wikipedia, 2022 19.6752878612 .txt, .fig, .png 4824 1 1
9 25.759986531 Laszlo, Wikipedia, 2022 25.7599865313 .txt, .fig, .png 7798 1 1
10 32.716949460 Laszlo, Wikipedia, 2022 32.7169494601 .txt, .fig, .png 16514 1 1
11 40.596450510 Laszlo, Wikipedia, 2022 40.5964505082 .txt, .fig, .png 26327 1 1
12 49.165253058 Laszlo, Wikipedia, 2022 49.1652530576 .txt, .fig, .png 16103 1 1
13 58.853230612 Laszlo, Wikipedia, 2022 58.8532306117 .txt, .fig, .png 46203 1 1
14 69.306363297 Laszlo, Wikipedia, 2022 69.3063632966 .txt, .fig, .png 19209 1 1
15 80.670244114 Laszlo, Wikipedia, 2022 80.6702441143 .txt, .fig, .png 78045 1 1
16 92.911655302 Laszlo, Wikipedia, 2022 92.91165530 .txt, .fig, .png 52279 1 1
17 106.050404829 Laszlo, Wikipedia, 2022 106.0504048287 .txt, .fig, .png 8181577 2 1
18 120.084467447 Laszlo, Wikipedia, 2022 120.08446745 .txt, .fig, .png 106728 1 1
19 135.089467557 Laszlo, Wikipedia, 2022 135.0894675574 .txt, .fig, .png 439774 1 1
20 150.881568334 Laszlo, Wikipedia, 2022 150.8815683341 .txt, .fig, .png 241330 1 1
21 167.641622399 Laszlo, Wikipedia, 2022 167.64162240 .txt, .fig, .png 2589615 1 1
22 185.287536149 Laszlo, Wikipedia, 2022 185.2875361494 .txt, .fig, .png 182089 1 1
23 203.930190663 Laszlo, Wikipedia, 2022 203.9301906631 .txt, .fig, .png 173274 1 1
24 223.347074052 Laszlo, Wikipedia, 2022 223.3470741 .txt, .fig, .png 1041546 1 1
25 243.812760299 Laszlo, Wikipedia, 2022 243.81276030 .txt, .fig, .png 930541 1 1
26 265.133326317 Laszlo, Wikipedia, 2022 265.13332632 .txt, .fig, .png 244160 1 1
27 287.302615033 Laszlo, Wikipedia, 2022 287.302615033 .txt, .fig, .png 302407 1 1
28 310.491542358 Laszlo, Wikipedia, 2022 310.49154236 .txt, .fig, .png 184638 1 1
29 334.63443992 Laszlo, Wikipedia, 2022 334.63444 .txt, .fig, .png 1500965 1 1
30 359.603945904 Laszlo, Wikipedia, 2022 359.60394590 .txt, .fig, .png 667926 1 1
31 385.530838063 Laszlo, Wikipedia, 2022 385.53083806 .txt, .fig, .png 218754 1 1
32 412.261274651 Laszlo, Wikipedia, 2022 412.26127465085 .txt, .fig, .png 153659 1 1
33 440.204057448 Laszlo, Wikipedia, 2022 440.20405745 .txt, .fig, .png 1086238 1 1
34 468.904853281 Laszlo, Wikipedia, 2022 468.90485328 .txt, .fig, .png 663848 1 1
35 498.569872491 Laszlo, Wikipedia, 2022 498.5698725 .txt, .fig, .png 796901 1 1
36 529.122408375 Laszlo, Wikipedia, 2022 529.122408 .txt, .fig, .png 4375674 3 1
40 660.675278835 Laszlo, Wikipedia, 2022 660.67527884 .txt, .fig, .png 12290673 1 1
41 695.916744342 Laszlo, Wikipedia, 2022 695.916744342 .txt, .fig, .png 4120263 1 1
42 732.078107544 Laszlo, Wikipedia, 2022 732.0781075 .txt, .fig, .png 415986 1 1
43 769.190846459 Laszlo, Wikipedia, 2022 769.19085 .txt, .fig, .png 6875931 1 1
44 807.174263085 Laszlo, Wikipedia, 2022 807.1742631 .txt, .fig, .png 1373933 1 1
45 846.188401061 Laszlo, Wikipedia, 2022 846.18840112 .txt, .fig, .png 6450632 2 1
46 886.167113639 Laszlo, Wikipedia, 2022 886.16711364 .txt, .fig, .png 974009 1 1
47 927.059270680 Laszlo, Wikipedia, 2022 927.05927068 .txt, .fig, .png 6450632 2 1
48 968.713455344 Laszlo, Wikipedia, 2022 968.713455 .txt, .fig, .png 46581059 1 1
49 1011.557182654 Laszlo, Wikipedia, 2022 1011.5571827 .txt, .fig, .png 761559 1 1
50 1055.182314726 Laszlo, Wikipedia, 2022 1055.182315 .txt, .fig, .png 4757801 1 1
52 1145.418964319 Laszlo, Wikipedia, 2022 1145.4189643 .txt, .fig, .png 1776902 1 1
53 1191.922290416 Laszlo, Wikipedia, 2022 1191.922290 .txt, .fig, .png 2491757 2 1
54 1239.361474729 Laszlo, Wikipedia, 2022 1239.3614747 .txt, .fig, .png 523472 1 1
55 1287.772720783 Laszlo, Wikipedia, 2022 1287.772721 .txt, .fig, .png 18192112 1 1
59 1490.773335279 Laszlo, Wikipedia, 2022 1490.7733353 .txt, .fig, .png 1293470 1 1
61 1597.941830199 Laszlo, Wikipedia, 2022 1597.9418302 .txt, .fig, .png 3156375 1 1
63 1708.879681503 Laszlo, Wikipedia, 2022 1708.8796815 .txt, .fig, .png 2916891 1 1
65 1823.667960264 Laszlo, Wikipedia, 2022 1823.6679603 .txt, .fig, .png 6007199 2 1
66 1882.441525304 Laszlo, Wikipedia, 2022 1882.44153 .txt, .fig, .png 7292578 1 1
67 1942.122700406 Laszlo, Wikipedia, 2022 1942.1227004 .txt, .fig, .png 3628947 1 1
71 2190.649906425 Laszlo, Wikipedia, 2022 2190.65 .txt, .fig, .png 5193106 1 1
72 2255.001190975 Laszlo, Wikipedia, 2022 2255.001191 .txt, .fig, .png 4515096 2 1
73 2320.633883745 Laszlo, Wikipedia, 2022 2320.633884 .txt, .fig, .png 16340462 1 1
75 2454.369689040 Laszlo, Wikipedia, 2022 2454.369689 .txt, .fig, .png 1669232 1 1
76 2522.674871841 Laszlo, Wikipedia, 2022 2522.674872 .txt, .fig, .png 5842821 1 1
77 2591.850152354 Laszlo, Wikipedia, 2022 2591.8501524 .txt, .fig, .png 1755143 1 1
79 2733.248357479 Laszlo, Wikipedia, 2022 2733.24836 .txt, .fig, .png 15451618 2 1
80 2805.355875981 Laszlo, Wikipedia, 2022 2805.355876 .txt, .fig, .png 3283309 2 1
81 2878.522829664 Laszlo, Wikipedia, 2022 2878.522830 .txt, .fig, .png 12591784 2 1
85 3180.361442939 Laszlo, Wikipedia, 2022 3180.361443 .txt, .fig, .png 9920862 2 1
88 3416.720196758 Laszlo, Wikipedia, 2022 3416.7201968 .txt, .fig, .png 4639490 1 1
90 3579.091222723 Laszlo, Wikipedia, 2022 3579.091222 .txt, .fig, .png 38417632 1 1
91 3661.713699320 Laszlo, Wikipedia, 2022 3661.713699 .txt, .fig, .png 32242934 1 1
92 3745.291636241 Laszlo, Wikipedia, 2022 3745.291636 .txt, .fig, .png 22980489 2 1
93 3829.844338421 Laszlo, Wikipedia, 2022 3829.844338 .txt, .fig, .png 6949533 3 1
95 4001.771675565 Laszlo, Wikipedia, 2022 4001.7716756 .txt, .fig, .png 26615780 2 1
96 4089.154010060 Laszlo, Wikipedia, 2022 4089.15401 .txt, .fig, .png 57131845 2 1
97 4177.533599622 Laszlo, Wikipedia, 2022 4177.533600 .txt, .fig, .png 2581286 1 1
99 4357.139163132 Laszlo, Wikipedia, 2022 4357.139163 .txt, .fig, .png 38875046 2 1
100 4448.350634331 Laszlo, Wikipedia, 2022 4448.350634 .txt, .fig, .png 4916509 2 1


For large \(N_{e}\), a distributed computing approach for SP-GOPT is used, to propose newly unpublished results for large \(N_{e}\).

\(N_e\) \(\widetilde{U}_{\text{min}}^{\text{benchmark}}\left(N_{e}\right)\) Benchmark
Source
\(\widetilde{U}_{\text{min}}^{\text{SP-GOPT}}\left(N_{e}\right)\) \(\vec{r}_{1}^{*},…,\vec{r}_{N_{e}}^{*}\) # of iterations # of re-
starts
# of CPU
threads
2832 3926826.0886472 Wales, Ulker, 2006 .txt, .fig, .png
3182 4963365.9063241 Wales, Ulker, 2006 .txt, .fig, .png
3552 6191357.2579633 Wales, Ulker, 2006 .txt, .fig, .png
3942 7632895.0289372 Wales, Ulker, 2006 .txt, .fig, .png
4352 9311276.2839985 Wales, Ulker, 2006 .txt, .fig, .png
10000 uncontested none .txt, .fig, .png
100000 uncontested none .txt, .fig, .png
1000000 uncontested none .txt, .fig, .png
10000000 uncontested none .txt, .fig, .png
100000000 uncontested none .txt, .fig, .png


This is a great problem for confronting the challenges of non-conex objective functions, not only seen in the field of optimization, but those found in real-world applications like those in Data Science, professional sports betting, quantitative finance, engineering, physics, and more.

Reference

1. Aspden, H. “Earnshaw's Theorem.” Amer. J. Phys. 55, 199-200, 1987.

2. Wikipedia contributors. (2022, October 22). “Thomson problem.” Wikipedia. https://en.wikipedia.org/wiki/Thomson_problem

3. Laszlo, H. “Numerical Solutions for the Thomson Problems.” Draft 0.4, January 20, 2022. https://www.hars.us/Papers/Numerical_Thomson.pdf

4. Wales, D.J., and Ulker, S., “Structure and dynamics of spherical crystals characterized for the Thomson problem.” Phys. Rev. B 74, 212101, 2006. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.74.212101

5. Wales, D.J., McKay, H., and Altschuler, E., “Defect motifs for spherical topologies.” Phys. Rev. B 79, 224115, 2009. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.79.224115